报告题目:Some rigidity results for holomorphic and meromorphic functions on complete Kahler connected sums with non-parabolic ends
报告人:董显晶教授
报告时间:2024年10月30日15:00-16:00
主持人:刘志学
地点:腾讯会议613-726-441
报告摘要:Motivated by invalidness of Liouville property for harmonic functions on the connected sum of several copies of complex Euclidean spaces, we explore the Nevanlinna theory on complete Kahler connected sums with non-parabolic ends. As a consequence, we prove some rigidity results such as Liouville’s theorem and Picard’s theorem for holomorphic and meromorphic functions on such Kahler connected sums.
报告人介绍:博士毕业于南京大学数学系,研究方向为多复变与复几何,特别是复流形上的值分布理论、L2理论;目前在J. Inst. Math. Jussieu,Pacific J. Math.,Asian J. Math.,Science China Math. 等国内外期刊上发表了多篇学术论文。